电磁炉的工作原理及维修方法 电磁炉的工作原理及维修方法电磁炉的工作原理及维修方法

电磁炉的工作原理及维修方法

分享不是天方夜谭,有时候我们也可以做到;分享是一种博爱的心境,学会分享,就学会了生活。喜欢分享讨论技术的可以进入论坛发帖哦;

可以添加我的个人微信号:ZHT131572。

电磁炉的加热原理:

电磁炉是采用磁场感应涡流原理,它利用高频的电流通过环形线圈,从而产生无数封闭磁场力,当磁场那磁力线通过导磁(如:铁质锅)的底部,既会产生无数小涡流(一种交变电流,家用电磁炉使用的是15-30KHZ的高频电流),使锅体本生自行高速发热,然后再加热锅内食物。

对于电磁炉的发热原理我们可以这样简单的理解:

锅和电磁炉内部发热线圈盘组成一个高频变压器,内部线圈是变压器初级,次级是锅。当内部初级发热线圈盘有交变电压输出后,必然在次级锅体上产生感应电流,感应电流通过锅体自身的电阻发热(所以锅本身也是负载),产生热量。假如:当内部初级发热盘有交变电压输出,若次级及负载(锅)不存在,则输出功率将非常低。当然在实际电路中,我们必须要很快的检测到此功率的变化,并将输出到发热线圈盘的交变电流关断。

由于非导磁性材料不能有效汇聚磁力线,几乎不能形成涡流(就像一个普通变压器如果没有硅钢片铁心,而只有两个绕组是不能有效传送能量的),所以基本上不加热;另外,导电能力特别差的磁性材料由于其电阻率太高,产生的涡流电流也很小,也不能很好产生热量。所以:电磁炉使用的锅体材料是导电性能相对较好,铁磁性材料的金属或者合金以及它们的复合体。一般采用的锅有:铸铁锅,生铁锅,不锈铁锅。纯不锈铁锅材料由于其导磁性能非常低,所以在电磁炉上并不能正常工作。

电磁炉是采用磁场感应涡流加热原理,它利用电流通过线圈产生磁场,当磁场内之磁力通过含铁质锅底部时,即会产生无数之小涡流,使锅体本身自行高速发热,然后再加热于锅内食物。电磁炉工作时产生的电磁波,完全被线圈底部的屏蔽层和顶板上的含铁质锅所吸收,不会泄漏,对人体健康绝对无危害。

适用的锅类容器

1、铁系(珐琅、铸锅、不锈铁)锅,不锈钢锅.注:复合底锅必须是电磁炉专用。

2、底部直径12CM以下,根据不同的功能使用,如煎炒烤炸类要离空1CM为最佳蒸煮类平底为最佳。

不适用的锅类容器:

1、铝、铜为材料之容器、锅。

2、容器底部直径不超过12CM者。

3、容器底部凸凹高度大于2CM者。

4、不锈钢双层复合底锅(非电磁炉专用)。

如何安全使用电磁炉

一、使用之前注意:

1、应使用质量好的插座,插座接触不良会导致烧机或电磁炉无法正常工作。

2、在插头电线损坏电线或电源插头未牢固地插入插座时,切勿使用电磁炉。

3、切勿弯曲、捆扎电线或对其施力过度,这会引起损坏。

4、切勿使任何障碍物附在本机插头或电源插座上。

5、切勿将插头插入己插有几个其它电器装置的插座,电流不得超出插座的极限(本装置的使用电流约为10A)。

6、切勿在可能受潮或靠近火焰的地方使用电磁炉。

7、电磁炉在放置了一段时间后,若重新使用电磁炉,请先通电10分钟,使电磁炉内部电子元件稳定后,再开机进行功能操作。

二、使用时注意:

1、切勿放置在不平稳的平面上。

2、切勿阻塞吸气口或排气口、避免炉内超温。

3、切勿在儿童可触及电磁炉、或儿童能自行使用的地方使用电磁炉。

4、切勿对空锅加热或加热过度。

5、切勿将诸如刀、叉、勺子、锅盖与铝箔等金属物品放置在顶板上,因为它们会受热。

6、切勿在盛放锅具的状态下搬运电磁炉。

7、切勿在四周空间不足的地方使用电磁炉、应使电磁炉的前部与左右两侧保持干净。

8、切勿使用金属丝和异物进入吸气或排气口的缝隙内。

9、切勿使物品跌落在顶板上。如表面出现裂纹,应立即关掉电源,拔出插头并送往修理。

三、使用之后注意:

1、炒菜锅在使用后不要置于炉面上,避免下次使用时难以启动。

2、烹调结束,锅具产生的高温热量会传导至电磁炉顶板,切勿立即触摸该顶板。

3、切勿用拉扯电线的方法拔出插头。

4、在确认不用电磁炉时,切勿使电源线续处于接通状态。

电磁炉的保养

A电源要求

(1)使用电磁炉必须使用各项技术指标符合标准带地线的三孔插座(最好选用有CCC标志的产品),绝对不可自行换用没有地线的两孔插座,因为两孔插座插头插上后易松动、不牢固且不符和国家标准,这样易产生瞬时打火,电流增大,较危险。

(2)插座不要位于电磁炉的正上方,防止热量上升烧烫电源。

(3)若有易使电流发生骤变且较为频繁的电器,如电焊机、冲击钻、电锤等或其它高功率用电器,如冰箱、洗衣机、热水器等与电磁炉同时使用,则较易损坏电磁炉,应引起注意,最好使用带有过流保护装置的插线板或选用稳定电源。最好不同时使用或尽量不在电磁炉工作的同时开关其它用电器,以免损坏电磁炉。

B电磁炉的散热

电磁炉工作时机体内部存有一定的温度,为使电磁炉发挥更好的作用,并正常工作,延长其使用寿命,这部分热量要及时的排放出去,所以尽量使电磁炉放置的位置有利于空气流通及散热。

C电磁炉的清洗

1,擦洗前请先拔掉电源线。

2,面板脏时或油污导致变色时,请用去污粉,牙膏或汽车车蜡擦磨,再用毛巾擦干净。机体和控制面板脏时以柔软的湿抹布擦拭,不易擦拭的油污,可用中性洗洁剂擦拭后,再用柔软的湿抹布擦拭至不留残渣。

3,且勿直接用水冲洗或浸入水中刷洗。

4,经常保持机体的清洁,以免蟑螂,昆虫等进入炉内,影响机体失灵。

5,吸气/排气罩可拆卸用水直接清洗或用棉花棒将灰尘除去,也可用牙刷加少许清洁剂清除。

D出现意外情况

如果使用电磁炉的过程中发现不正常停机或报警等异常情况,一定要马上停止使用,及时与厂家维修部进行联系和咨询,如确定有问题,请专业维修人员进行处理,千万不可自行拆卸。

E电磁炉的收藏

在长时间不需使用电磁炉时,首先要擦洗干净、晾干机体后收藏起来,不要放在潮湿环境中保存,要放于干燥处且包装内尽量放一些干燥剂和蟑螂药,避免挤压,以备再用。

电磁炉的维修及主要元件组成部份

一、简介:电磁加热原理(见上图)

1.1

电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

1.2

一般的电磁炉,介面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为160~260V,

100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机)

保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。

二、原理分析

LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压),

置于LM339内部控制输出端的三极管截止,此时输出端相当于开路;当电压比较器输入端电压反向时(-输入端电压高于+输入端电压),

置于LM339内部控制输出端的三极管导通,将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.1.2IGBT

绝缘栅双极晶体管(IusulatedGateBipolar

Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。目前有用不同材料及工艺制作的IGBT,

但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。IGBT有三个电极(见上图),分别称为栅极G(也叫控制极或门极)

、集电极C(亦称漏极)及发射极E(也称源极)。

从IGBT的下述特点中可看出,它克服了功率MOSFET的一个致命缺陷,就是于高压大电流工作时,导通电阻大,器件发热严重,

输出效率下降。IGBT的特点:

1.电流密度大,是MOSFET的数十倍。

2.输入阻抗高,栅驱动功率极小,驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下,其导通电阻Rce(on)不大于MOSFET的Rds(on)的10%。

4.击穿电压高,安全工作区大,在瞬态功率较高时不会受损坏。

5.开关速度快,关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us,约为GTR的10%,接近于功率MOSFET,

开关频率直达100KHz,开关损耗仅为GTR的30%。

IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体,是极佳的高速高压半导体功率器件。

目前因应不同机种采了不同规格的IGBT,它们的参数如下:

(1)

SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SKW25N120。

(2)

SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3)GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A,内部带阻尼二极管,

该IGBT可代用SGW25N120、SKW25N120,代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(4)

GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321,

配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。

(5)GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部带阻尼二极管,

该IGBT可代用SGW25N120、SKW25N120、GT40Q321、GT40T101,

代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(6)GT60M303----东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A,内部带阻尼二极管。

2.2电路方框图

2.3主回路原理分析

时间t1~t2时当开关脉冲加至Q1的G极时,Q1饱和导通,电流i1从电源流过L1,由于线圈感抗不允许电流突变.所以在t1~t2时间i1随线性上升,在t2时脉冲结束,Q1截止,同样由于感抗作用,i1不能立即变0,于是向C3充电,产生充电电流i2,在t3时间,C3电荷充满,电流变0,这时L1的磁场能量全部转为C3的电场能量,在电容两端出现左负右正,幅度达到峰值电压,在Q1的CE极间出现的电压实际为逆程脉冲峰压+电源电压,在t3~t4时间,C3通过L1放电完毕,i3达到最大值,电容两端电压消失,这时电容中的电能又全部转为L1中的磁能,因感抗作用,i3不能立即变0,于是L1两端电动势反向,即L1两端电位左正右负,由于阻尼管D11的存在,C3不能继续反向充电,而是经过C2、D11回流,形成电流i4,在t4时间,第二个脉冲开始到来,但这时Q1的UE为正,UC为负,处于反偏状态,所以Q1不能导通,待i4减小到0,L1中的磁能放完,即到t5时Q1才开始第二次导通,产生i5以后又重复i1~i4过程,因此在L1上就产生了和开关脉冲f(20KHz~30KHz)相同的交流电流。t4~t5的i4是阻尼管D11的导通电流,

在高频电流一个电流周期里,t2~t3的i2是线盘磁能对电容C3的充电电流,t3~t4的i3是逆程脉冲峰压通过L1放电的电流,t4~t5的i4是L1两端电动势反向时,

因D11的存在令C3不能继续反向充电,而经过C2、D11回流所形成的阻尼电流,Q1的导通电流实际上是i1。

Q1的VCE电压变化:在静态时,UC为输入电源经过整流后的直流电源,t1~t2,Q1饱和导通,UC接近地电位,t4~t5,阻尼管D11导通,UC为负压(电压为阻尼二极管的顺向压降),t2~t4,也就是LC自由振荡的半个周期,UC上出现峰值电压,在t3时UC达到最大值。

以上分析证实两个问题:一是在高频电流的一个周期里,只有i1是电源供给L的能量,所以i1的大小就决定加热功率的大小,同时脉冲宽度越大,t1~t2的时间就越长,i1就越大,反之亦然,所以要调节加热功率,只需要调节脉冲的宽度;二是LC自由振荡的半周期时间是出现峰值电压的时间,亦是Q1的截止时间,也是开关脉冲没有到达的时间,这个时间关系是不能错位的,如峰值脉冲还没有消失,而开关脉冲己提前到来,就会出现很大的导通电流使Q1烧坏,因此必须使开关脉冲的前沿与峰值脉冲后沿相同步。

2.4振荡电路

(1)当G点有Vi输入时、2脚=0V时,V5等于D12与D13的顺向压降.而当V6

而V6则由R56、R54向C5充电。

(2)当V6>V5时,2脚=0v,V5亦降至D12与D13的顺向压降,而V6则由C5经R54、D29放电。

(3)V6放电至小于V5时,又重复(1)形成振荡。

“G点的电压越高,2脚处于ON的时间越长,电磁炉的加热功率越大,反之越小”。

2.5IGBT激励电路

振荡电路输出幅度约4.1V的脉冲信号,此电压不能直接控制IGBT(Q1)的饱和导通及截止,所以必须通过激励电路将信号放大才行,该电路工作过程如下:

(1)V8OFF时(V8=0V),V8

(2)V8

ON时(V8=4.1V),V8>V9,V10为低,Q8和Q3截止、Q9和Q10导通,+22V通过R71、Q10加至Q1的G极,Q1导通。

2.6PWM脉宽调控电路

CPU输出PWM脉冲到由R6、C33、R16组成的积分电路,

PWM脉冲宽度越宽,C33的电压越高,C20的电压也跟着升高,送到振荡电路(G点)的控制电压随着C20的升高而升高,而G点输入的电压越高,

V7处于ON的时间越长,电磁炉的加热功率越大,反之越小。

“CPU通过控制PWM脉冲的宽与窄,控制送至振荡电路G的加热功率控制电压,控制了IGBT导通时间的长短,结果控制了加热功率的大小”。

2.7同步电路

R78、R51分压产生V3,R74+R75、R52分压产生V4,在高频电流的一个周期里,在t2~t4时间

(图1),由于C3两端电压为左负右正,所以V3V5,V7

OFF(V7=0V),振荡没有输出,也就没有开关脉冲加至Q1的G极,保证了Q1在t2~t4时间不会导通,在t4~t6时间,C3电容两端电压消失,

V3>V4,V5上升,振荡有输出,有开关脉冲加至Q1的G极。以上动作过程,保证了加到Q1G极上的开关脉冲前沿与Q1上产生的VCE脉冲后沿相同步。

2.8加热开关控制

(1)当不加热时,CPU19脚输出低电平(同时13脚也停止PWM输出),

D18导通,将V8拉低,另V9>V8,使IGBT激励电路停止输出,IGBT截止,则加热停止。

(2)开始加热时,CPU

19脚输出高电平,D18截止,同时13脚开始间隔输出PWM试探信号,同时CPU通过分析电流检测电路和VAC检测电路反馈的电压信息、VCE检测电路反馈的电压波形变化情况,判断是否己放入适合的锅具,如果判断己放入适合的锅具,CPU13脚转为输出正常的PWM信号,电磁炉进入正常加热状态,如果电流检测电路、VAC及VCE电路反馈的信息,不符合条件,CPU会判定为所放入的锅具不符或无锅,则继续输出PWM试探信号,同时发出指示无锅的报知信息(祥见故障代码表),如1分钟内仍不符合条件,则关机。

2.9VAC检测电路

AC220V由D1、D2整流的脉动直流电压通过R79、R55分压、C32平滑后的直流电压送入CPU,根据监测该电压的变化,CPU会自动作出各种动作指令:

(1)判别输入的电源电压是否在充许范围内,否则停止加热,并报知信息(祥见故障代码表)。

(2)配合电流检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(祥见加热开关控制及试探过程一节)。

(3)配合电流检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。

“电源输入标准220V±1V电压,不接线盘(L1)测试CPU第7脚电压,标准为1.95V±0.06V”。

2.10电流检测电路

电流互感器CT二次测得的AC电压,经D20~D23组成的桥式整流电路整流、C31平滑,所获得的直流电压送至CPU,该电压越高,表示电源输入的电流越大,

CPU根据监测该电压的变化,自动作出各种动作指令:

(1)配合VAC检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(祥见加热开关控制及试探过程一节)。

(2)配合VAC检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。

2.11VCE检测电路

将IGBT(Q1)集电极上的脉冲电压通过R76+R77、R53分压送至Q6基极,在发射极上获得其取样电压,此反影了Q1

VCE电压变化的信息送入CPU,CPU根据监测该电压的变化,自动作出各种动作指令:

(1)配合VAC检测电路、电流检测电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(祥见加热开关控制及试探过程一节)。

(2)

根据VCE取样电压值,自动调整PWM脉宽,抑制VCE脉冲幅度不高于1100V(此值适用于耐压1200V的IGBT,耐压1500V的IGBT抑制值为1300V)。

(3)

当测得其它原因导至VCE脉冲高于1150V时(此值适用于耐压1200V的IGBT,耐压1500V的IGBT此值为1400V),CPU立即发出停止加热指令(祥见故障代码表)。

2.12浪涌电压监测电路

电源电压正常时,V14>V15,V16

高(V16约4.7V),D17截止,振荡电路可以输出振荡脉冲信号,当电源突然有浪涌电压输入时,此电压通过C4耦合,再经过R72、R57分压取样,该取样电压通过D28另V15升高,结果V15>V14另

IC2C比较器翻转,V16=0V,D17瞬间导通,将振荡电路输出的振荡脉冲电压V7拉低,电磁炉暂停加热,同时,CPU监测到V16

低,立即发出暂止加热指令,待浪涌电压过后、V16由转高时,CPU再重新发出加热指令。

2.13过零检测

当正弦波电源电压处于上下半周时,

由D1、D2和整流桥DB内部交流两输入端对地的两个二极管组成的桥式整流电路产生的脉动直流电压通过R73、R14分压的电压维持Q11导通,Q11集电极电压变0,

当正弦波电源电压处于过零点时,Q11因基极电压消失而截止,集电极电压随即升高,在集电极则形成了与电源过零点相同步的方波信号,CPU通过监测该信号的变化,作出相应的动作指令。

见图dcl-12-13

2.14锅底温度监测电路

加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的负温度系数热敏电阻,该电阻阻值的变化间接反影了加热锅具的温度变化(温度/阻值祥见热敏电阻温度分度表),热敏电阻与R58分压点的电压变化其实反影了热敏电阻阻值的变化,即加热锅具的温度变化,

CPU通过监测该电压的变化,作出相应的动作指令:

(1)定温功能时,控制加热指令,另被加热物体温度恒定在指定范围内。

(2)当锅具温度高于220℃时,加热立即停止,并报知信息(祥见故障代码表)。

(3)当锅具空烧时,加热立即停止,并报知信息(祥见故障代码表)。

(4)当热敏电阻开路或短路时,发出不启动指令,并报知相关的信息(祥见故障代码表)。

2.15IGBT温度监测电路

IGBT产生的温度透过散热片传至紧贴其上的负温度系数热敏电阻TH,该电阻阻值的变化间接反影了IGBT的温度变化(温度/阻值祥见热敏电阻温度分度表),热敏电阻与R59分压点的电压变化其实反影了热敏电阻阻值的变化,即IGBT的温度变化,

CPU通过监测该电压的变化,作出相应的动作指令:

(1)IGBT结温高于85℃时,调整PWM的输出,令IGBT结温≤85℃。

(2)当IGBT结温由于某原因(例如散热系统故障)而高于95℃时,加热立即停止,并报知信息(祥见故障代码表)。

(3)当热敏电阻TH开路或短路时,发出不启动指令,并报知相关的信息(祥见故障代码表)。

(4)关机时如IGBT温度>50℃,CPU发出风扇继续运转指令,直至温度<50℃(继续运转超过4分钟如温度仍>50℃,

风扇停转;风扇延时运转期间,按1次关机键,可关闭风扇)。

(5)电磁炉刚启动时,当测得环境温度<0℃,CPU调用低温监测模式加热1分钟,

1分钟后再转用正常监测模式,防止电路零件因低温偏离标准值造成电路参数改变而损坏电磁炉。见上图

2.16散热系统

将IGBT及整流器DB紧贴于散热片上,利用风扇运转通过电磁炉进、出风口形成的气流将散热片上的热及线盘L1等零件工作时产生的热、加热锅具辐射进电磁炉内的热排出电磁炉外。

CPU发出风扇运转指令时,15脚输出高电平,电压通过R5送至Q5基极,Q5饱和导通,VCC电流流过风扇、Q5至地,风扇运转;

CPU发出风扇停转指令时,15脚输出低电平,Q5截止,风扇因没有电流流过而停转。

2.17主电源

AC220V

50/60Hz电源经保险丝FUSE,再通过由CY1、CY2、C1、共模线圈L1组成的滤波电路(针对EMC传导问题而设置,祥见注解),再通过电流互感器至桥式整流器DB,产生的脉动直流电压通过扼流线圈提供给主回路使用;AC1、AC2两端电压除送至辅助电源使用外,另外还通过印于PCB板上的保险线P.F.送至D1、D2整流得到脉动直流电压作检测用途。

注解:由于中国大陆目前并未提出电磁炉须作强制性电磁兼容(EMC)认证,基于成本原因,内销产品大部分没有将CY1、CY2装上,L1用跳线取代,但基本上不影响电磁炉使用性能。

2.18辅助电源

AC220V50/60Hz电压接入变压器初级线圈,次级两绕组分别产生13.5V和23V交流电压。

13.5V交流电压由D3~D6组成的桥式整流电路整流、C37滤波,在C37上获得的直流电压VCC除供给散热风扇使用外,还经由IC1三端稳压IC稳压、C38滤波,产生+5V电压供控制电路使用。

23V交流电压由D7~D10组成的桥式整流电路整流、C34滤波后,

再通过由Q4、R7、ZD1、C35、C36组成的串联型稳压滤波电路,产生+22V电压供IC2和IGBT激励电路使用。

2.19报警电路

电磁炉发出报知响声时,CPU14脚输出幅度为5V、频率3.8KHz的脉冲信号电压至蜂鸣器ZD,令ZD发出报知响声。

三、故障维修

篇幅太长,查看更详细内容请根据下图指引!

版权申明: 本站文章来源于网络或网友自行上传,如果有侵权行为请联系站长及时删除。

赞 ( 1) 打赏

评论

9+4=

此站点使用Akismet来减少垃圾评论。 了解我们如何处理您的评论数据