技术|详解DNA琼脂糖凝胶电泳 技术|详解DNA琼脂糖凝胶电泳技术|详解DNA琼脂糖凝胶电泳

技术|详解DNA琼脂糖凝胶电泳

微信已更改了推送方式,请将我们“设为星标”,以免错过最新的消息哦~

当电流被施加到含有带电片段的介质上时,这些片段将向相反的电荷迁移,这是一个简单的物理定律规定。

它们的速度取决于它们所通过的介质,以及其他特性,如存在的片段的大小,在这些因素的影响下,它们彼此之间会分离,这就是琼脂糖凝胶电泳等电泳技术的基础。目前,这些技术在整个生命科学领域被广泛的使用。

在这篇文章中,我们将考虑琼脂糖凝胶电泳是如何工作的,如何解释它的结果,以及它能够起什么作用。

什么是电泳?

电泳是一种利用电流根据DNA、RNA或蛋白质的物理特性(如大小和电荷)来分离它们的技术。

什么是琼脂糖凝胶电泳?

琼脂糖凝胶电泳是一种电泳形式,用于根据核酸(DNA或RNA)片段的大小进行分离。当施加电流时,带负电的DNA/RNA通过琼脂糖凝胶的孔隙向凝胶带正电的一端迁移,较小的片段迁移较快。由此产生的条带可以用紫外线(UV)光来观察。

然而,RNA[1]往往会形成二级结构,而且有时同一个片段会有多个不同的种类,这会影响其迁移的方式。因此,观察到的条带并不总是代表它们的真实尺寸,图像也很模糊。

在这种情况下,琼脂糖天然凝胶(条件不会破坏分析物的自然结构)往往不用于分析RNA的大小,尽管它们可以提供数量和完整性的估计。替代方法包括RNA印迹法和变性琼脂糖凝胶电泳[2],它们使用的条件能够破坏二级结构。

琼脂糖凝胶也可用于根据蛋白质的大小和电荷来分离蛋白质[3](与DNA/RNA不同,蛋白质电荷根据所含氨基酸的不同而不同)。然而,由于琼脂糖凝胶的孔径较大,蛋白质通常在聚丙烯酰胺凝胶上分离,而聚丙烯酰胺凝胶的孔径较小,为小的蛋白质分子提供更大的分辨率。

因此,在本文的剩余部分,我们将重点讨论DNA琼脂糖凝胶电泳。

凝胶电泳是如何工作的?

琼脂糖是琼脂的一种成分,它形成了一个由螺旋状的琼脂糖分子组成的三维凝胶基质,这些螺旋状的琼脂糖分子在超线圈束中被氢键固定,有通道和孔隙,分子能够通过。当加热时,这些氢键断裂,使琼脂糖变成液体,并允许它在复位前被倒入模具(图1)。

图1|琼脂糖凝胶中的孔隙形成和温度诱导的状态转变。

琼脂糖在凝胶中的百分比影响了孔的大小,从而影响了可能通过的分子的大小以及通过的速度。琼脂糖的百分比越高,孔径越小,因此能够通过的分子越小,迁移速度越慢。

在分子生物学实验室中,0.7~1%的琼脂糖凝胶通常用于日常的DNA分离,对0.2~10kb范围内的片段提供良好、清晰的区分。较大的片段可以用较低百分比的凝胶来解决,但它们会变得非常脆弱且难以处理,而较高百分比的凝胶会对小片段提供更好的分辨率,但很脆且可能凝固不均匀。

由于DNA在肉眼中是不可见的,在凝固过程中,一种夹层染料如溴化乙锭(EtBr)被纳入凝胶中。这与DNA结合,并在紫外线下发出荧光,从而使DNA片段可以被观察到。存在的DNA越多,条带就越亮。

与加载染料混合的样本被放置在凝胶的一端,凝胶被浸泡在运行缓冲液中。然后电流通过凝胶槽两端的电极穿过凝胶(图2)。

图2|琼脂糖凝胶电泳装置的图示。琼脂糖凝胶放置在缓冲液槽中,样品与加载染料混合后放置在凝胶一端的孔中,施加电流使带负电的DNA向正电极(阴极)移动。

当样品运行得足够远以获得足够的分离时,将凝胶从槽中取出并放在一个紫外光箱上。然后,夹层染料可以使样品条带可视化,并通过与已知条带大小的DNAmarker进行比较来确定其大小。迁移距离和片段大小之间的关系是非线性的,增加了包括尺寸标记作为指导的重要性(图3)。

图3|A)上面的插图描述了DNA电泳的典型结果。在左边,有一个尺寸标记,用来作为样品DNA片段长度(以碱基对为单位)的参考。标记的右边是三个样品。图片显示了较小的DNA片段如何在琼脂糖凝胶中比较大的DNA片段移动得更远。

B)图片右侧的图表显示了DNA片段的大小与迁移距离之间的非线性关系。这是一条负的曲线,当DNA片段变大时,它们在凝胶中迁移的距离就会减少。

DNA凝胶电泳的步骤、

凝胶电泳仪、电泳缓冲液和电分离

在选择、设置、运行和分析琼脂糖凝胶的过程中,有一些关键步骤[4],我们现在将介绍这些步骤。

4.1、确定所需的凝胶百分比

0.7-1%的琼脂糖凝胶通常对大多数应用来说是足够的,但重要的是选择一个适合你的样品和预期片段大小的百分比。将琼脂糖粉末与用于运行凝胶的相同类型的缓冲液结合起来,加热使混合物融化,避免沸腾。

三乙酰-乙二胺四乙酸(EDTA)(TAE)或三硼酸-EDTA(TBE)[5]通常是首选的缓冲液,因为三酸溶液是微碱性条件下的有效缓冲液,可保持DNA去质子化并溶于水。EDTA是一种螯合剂,能使可能损害被分析的DNA的核酸酶失活。

4.2、凝胶浇注

选择所需尺寸的凝胶浇注模具和梳子,为所有样品和marker提供足够数量的孔,以及容纳每个待装样品数量的孔容量。用铸造框架或胶带固定模具的两端,以便在凝胶凝固时将其固定。

在模具的底部加入DNA夹层染料,如果使用的是EtBr,通常浓度为0.2-0.5µg/ml。EtBr是一种诱变剂的证据目前仍有争议,但因此,许多实验室已经转而使用替代品[6],如GelRed。

加入凝胶,注意不要过度填充模具,并确保夹层染料均匀混合。凝胶太热时不要倒入,否则模具可能会变形或破裂。

4.3、将样品/marker与加载染料混合

加载染料具有多种功能,它们可以让用户看到他们原本无色的样品在哪里,使其更容易将样品准确地移入孔中,从而减少孔间样品交叉污染的可能性。

当凝胶运行时,染料与样品一起迁移,使用户能够知道样品在凝胶中的位置,并防止样品跑得太远而流失到缓冲液中。没有加载染料的DNA样品在加载时也会倾向于分散到运行缓冲液中,因为它们的密度较小。

因此,大多数加载染料含有甘油或Ficoll,这使得样品-染料混合物更密,所以它沉淀在孔的底部。溴酚蓝是一种流行的着色剂选择,但有些也含有额外的染料,如二甲苯氰醇。虽然可以购买加载染料,但许多实验室选择自己制作。

如果你的样品量非常小(例如,少于5µL),在这个阶段加入一点水可能是有利的,这样更容易有效和均匀地装载到凝胶孔。

同样,如果你预计某些样品中的DNA浓度比其他样品高得多,那么在这个阶段也可能有必要向这些浓缩样品的样品-染料混合物中加水。

如果你不这样做,在可视化过程中,这些条带给出的强信号可能会掩盖较弱的条带,或者需要对强条带进行过度曝光以观察较弱的条带,在凝胶图像上形成明亮、扭曲的区域。

4.4、凝胶装入

从设定好的凝胶上取下浇注框/胶带,并将其放入凝胶槽中,确保孔位于负电极(一般为黑色),将运行缓冲液(TAE或TBE)注入槽中,使凝胶被淹没。

小心地取下梳子,轻轻地将样品-染料(如果使用水)混合液移入孔中。尽量避免用移液器吸头接触孔的边缘,因为它们可能会破裂,使一个样品跑到下一个孔中。过量的孔会产生同样的结果。DNA的样本量过大也会在运行过程中减慢DNA的迁移。

装上标记marker,最好是在样品行的两端各装一个。凝胶不一定总是在一条完美的直线上运行,所以在两端各装一个marker可以更容易确定存在的片段的大小。有多种marker可供选择,并且标明了不同的尺寸,选择一个最适合你期望的尺寸。

4.5、凝胶运行

将盖子放在电极黑对黑、红对红的罐子上,并将电极插入一个电源盒,也是黑对黑、红对红,这与凝胶罐一起构成了凝胶电泳仪。

确保电极和盖子的方向正确,否则你的样品会从孔中倒流到运行缓冲液中。设定凝胶运行的时间和电压,120V、35分钟是一个很好的近似值,但是这应该根据所使用的凝胶比例和预期分离的片段大小进行调整,以获得良好的电分离。

在琼脂糖凝胶上施加电流会使其发热,电压越高,发热越多,所以当运行低百分比的凝胶时,最好使用较低的电压以防止熔化。

增加电压以使凝胶运行得更快是很诱人的,然而,这可能会导致【笑脸凝胶】,即带子在两端向上弯曲,使其难以确定正确的带子大小。这是指凝胶开始轻微融化,使条带运行不均匀。这也会导致条带出现涂抹状和不清晰的情况。

4.6、可视化

一旦样品在凝胶上运行了大部分(染料前部会使其可见),关闭电源。

戴上手套,轻轻地将模具中的凝胶从槽中取出,排掉多余的运行缓冲液,并将其转移到一个适当的容器中的紫外箱中,以便进行可视化。更换手套以防止凝胶或运行缓冲液中的夹层染料污染周围的表面、门把手等。

如果下游应用需要DNA片段,可以用手术刀小心地从凝胶中切除相应的条带,同时将其放在黑暗房间的紫外光箱上。确保你戴上紫外线面罩,并在灯箱开启时保持皮肤覆盖,以防止紫外线对皮肤或眼睛的伤害。

凝胶电泳结果的判读

琼脂糖凝胶可以在暗室中的紫外光箱上进行观察,或者使用与相机相连的独立灯箱。

无论使用哪种系统,紫外光从下面照射凝胶,DNA条带由于与它们结合的夹层染料而发出荧光,可以用带有专门的紫外线过滤器的照相机来记录。

标记物marker有一份说明书,表明它们包括的每个条带的大小。通过将其与样品通道中的条带进行比较,可以确定条带的大小。样品之间DNA的相对数量也可以进行比较,因为较高的DNA浓度会产生较亮的条带。图4中显示了一个例子。

图4|从一个有肺部症状的病人的支气管肺泡灌洗液(BAL)诊断标本中提取的DNA的PCR扩增产物的琼脂糖凝胶(2%)分析。

凝胶电泳的用途是什么?

有许多原因可能需要分离DNA片段,其中许多在生命科学学科中广泛适用。

6.1、样品DNA的可视化

对DNA片段进行分离和可视化,以便让用户确定结果。

样品中是否存在DNA

:这可以确认,例如,DNA提取或PCR是否有效,因此在诊断测试中可以确定样品是阳性还是阴性。

样品中DNA片段的大小

:例如,如果进行PCR或限制性消化,带子的大小是否符合预期?这可以证实基因工程实验是否成功,或者可以表明是否存在基因插入、缺失[8]或重复区域[9],这些可以作为某些遗传病的诊断工具。在为下一代测序准备DNA时,重要的是用于制备文库的片段DNA具有正确的大小,以便进行有效的测序。

样品中DNA片段的数量

:尽管有更精确的方法来进行精确的DNA定量[10],如紫外线-可见光光谱,当在凝胶上运行样品时,产生的条带强度可以让人大致了解样品中相对于其他样品的DNA数量。

样品的清洁程度

:虽然在某些情况下,如运行全基因组DNA时,可能会出现污浊的条带,但一般来说,PCR或限制性消化会产生清晰的条带。扩散带或污点可能表明PCR条件或引物不理想,消化不完全或存在干扰性污染物,如DNA样品中的RNA。

6.2、用于纯化的DNA片段的分离

如果下游应用需要DNA片段,如克隆[11],或在限制性消化后,可能需要将特定大小的DNA片段从总样品中分离出来。为了达到这个目的,消化或扩增后的样品可以在凝胶上运行,并将含有感兴趣的片段的凝胶部分切除。

在进行下游步骤之前,可使用清理工具和方案[12,13]将DNA从琼脂糖凝胶中纯化出来。

6.3、用于DNA印迹法的DNA片段的分离

DNA印迹法是一种用于检测样品中特定DNA序列的技术。为了做到这一点,DNA片段首先必须通过琼脂糖凝胶电泳分离,然后才能对目标序列进行探测。

6.4、电泳迁移率测定(EMSA)

EMSA[14],也被称为凝胶移动性检测,用于检测蛋白质和核酸之间的相互作用。例子可能包括促进或阻止基因表达的转录因子[15]的结合。

当一个蛋白质与一个DNA片段结合时,它将改变它在琼脂糖凝胶中的迁移方式,产生「移位」。因此,通过运行带有或不带有假定的DNA结合蛋白的不同DNA片段组合,可以确定何时发生了结合或没有结合,从而确定目标序列。

诊断科学编辑团队收集、整理和编撰,如需更多资讯,请关注公众号诊断科学(DiagnosticsScience)。

向上滑动阅览

参考文献

[1]RioDC,AresM,HannonGJ,NilsenTW.NondenaturingagarosegelelectrophoresisofRNA.ColdSpringHarbProtoc.2010;2010(6):pdb.prot5445.doi:10.1101/pdb.prot5445

[2]MasekT,VopalenskyV,SuchomelovaP,PospisekM.DenaturingRNAelectrophoresisinTAEagarosegels.AnalBiochem.2005;336(1):46-50.doi:10.1016/j.ab.2004.09.010

[3]KrizekDM,RickME.Agarosegelelectrophoresisofproteins.CurrProtocCellBiol.2002;15(1):6.7.1-6.7.13.doi:10.1002/0471143030.cb0607s15

[4]LeePY,CostumbradoJ,HsuCY,KimYH.AgarosegelelectrophoresisfortheseparationofDNAfragments.JVisExp.2012;(62):3923.doi:10.3791/3923

[5]SandersonBA,ArakiN,LilleyJL,GuerreroG,LewisLK.ModificationofgelarchitectureandTBE/TAEbuffercompositiontominimizeheatingduringagarosegelelectrophoresis.AnalBiochem.2014;454:44-52.doi:10.1016/j.ab.2014.03.003

[6]HallAC.AcomparisonofDNAstainsandstainingmethodsforagarosegelelectrophoresis.bioRxiv.2019.doi:10.1101/568253

[7]DNAgel-loadingdye(10X).ColdSpringHarbProtoc.2008;2008(8):pdb.rec11373.doi:10.1101/pdb.rec11373

[8]SchwarzMJ.DNAdiagnosisofcysticfibrosis.AnnClinBiochem.1998;35(5):584-610.doi:10.1177/000456329803500502

[9]MarwalA,SahuAK,GaurRK.Chapter16-MolecularMarkers:ToolforGeneticAnalysis.In:VermaAS,SinghA,eds.AnimalBiotechnology.AcademicPress;2014:289-305.doi:10.1016/B978-0-12-416002-6.00016-X

[10]TweedieJW,StowellKM.QuantificationofDNAbyagarosegelelectrophoresisandanalysisofthetopoisomersofplasmidandM13DNAfollowingtreatmentwitharestrictionendonucleaseorDNAtopoisomeraseI.BiochemMolBiolEduc.2005;33(1):28-33.doi:10.1002/bmb.2005.494033010410

[11]MolnarC,GairJ.Chapter10.1CloningandGeneticEngineering.In:ConceptsofBiology.PublishedonlineMay14,2015.AccessedFebruary2,2022.https://opentextbc.ca/biology/chapter/10-1-cloning-and-genetic-engineering/

[12]BalletbóA.DNApurificationfromanagarosegel(protocolforNucleoSpin®pCRclean-upgelextractionkit).protocols.io.PublishedSeptember22,2019.AccessedFebruary2,2022.doi:10.17504/protocols.io.7hrhj56

[13]DowneyN.ExtractionofDNAfromAgaroseGels.In:CasaliN,PrestonA,eds.E.coliPlasmidVectors:MethodsandApplications.MethodsinMolecularBiologyTM.HumanaPress;2003:137-139.doi:10.1385/1-59259-409-3:137

[14]HellmanLM,FriedMG.Electrophoreticmobilityshiftassay(EMSA)fordetectingprotein–nucleicacidinteractions.NatProtoc.2007;2(8):1849-1861.doi:10.1038/nprot.2007.249

YousafN,GouldD.DemonstratingInteractionsofTranscriptionFactorswithDNAbyElectrophoreticMobilityShiftAssay.In:GouldD,ed.MammalianSyntheticPromoters.MethodsinMolecularBiology.Springer;2017:11-21.doi:10.1007/978-1-4939-7223-4_2

公开留言请点这里~

诊断技术与合规交流平台

长按识别关注

“诊断科学”平台

长按识别添加客服

加入“读者交流群”

本平台转载文章仅代表原作者观点,不代表本平台立场,如有侵权请联系平台删除!

求分享

求点赞

求在看

版权申明: 本站文章来源于网络或网友自行上传,如果有侵权行为请联系站长及时删除。

赞 ( 1) 打赏

评论

9+4=

此站点使用Akismet来减少垃圾评论。 了解我们如何处理您的评论数据